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Motivations

I The marriage of mobile edge computing (MEC) and artificial
intelligence (AI) to evoke potentials
• the explosive growth in the volume of data at the network edge

• the unprecedented success of data-driven deep learning (DL)
applications

• the growing need to perform intelligent tasks on mobile devices such
as autonomous vehicles and drones

I The enormous consumption due to
• the dense deployment of base stations (BSs)

• the energy-demanding nature of DL algorithms
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Power Consumption Decomposition for AlexNet

1

I That’s around 0.45W, which is comparable to the power
consumption of a BS, e.g., 1W.

1Produced on the website https://energyestimation.mit.edu/.



Framework

...
user 1 user 2 user K

BS 1
Base Station

Mobile User

Uplink: Input Data
Downlink: Task Result

BS N

...
Task

I Basic tradeoff: more BSs working on the same task results in
higher quality-of-service (QoS) perceived by users, at the cost of
computation and communication inefficiency

I Goal
• minimize power consumption while satisfying pre-defined QoS to

achieve green mobile edge computing
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System Model
I Communication Model: the set of N L-antenna BSs N , the set

of K single-antenna users K, task selection strategy
A = (A1, · · · ,AN )

yk =
∑
n∈N

hH
kn

∑
l∈An

vnlsl + zk

• yk ∈ C: the received signal at the k-th user
• hkn ∈ CL: the channel vector between the k-th user and n-th BS
• sl ∈ C: the representative signal for task result φl(dl)
• vnl ∈ CL: the beamforming vector at n-th BS for signal sl
• zk ∼ CN

(
0, σ2

k

)
: the complex additive white Gaussian noise

I Power Consumption Model∑
n∈N

∑
k∈K

1

ηn
‖vnk‖22︸ ︷︷ ︸

communication power

+
∑
n∈N

∑
k∈An

P c
nk︸ ︷︷ ︸

computation power

• ηn: the power amplifier efficiency of the n-th BS
• P c

nk: the computational power consumption for n-th BS to perform
the k-th user’s task
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Problem Formulation

I Given users’ target QoS [γ1, . . . , γK ], and BSs’ maximum power
limits [Pmax

1 , . . . , Pmax
N ], the goal of green computing is formulated

as the following joint transmit beamforming design and task
selection problem

minimize
A,v

∑
n∈N

∑
k∈K

1

ηn
‖vnk‖22 +

∑
n∈N

∑
k∈An

P c
nk

subject to SINRk ≥ γk, k = 1, . . . ,K,∑
k∈K
‖vnk‖22 ≤ Pmax

n , n = 1, . . . , N.

• SINRk =
|∑n:k∈An

hH
knvnk|2∑

l 6=k|
∑

n:l∈An
hH

knvnl|2+σ2
k

• v =
[
vH
11,v

H
12, . . . ,v

H
NK

]H ∈ CNLK is the aggregated transmit
beamforming vector.



Problem Analysis

I The above problem is a mixed-integer-nonlinear-programming
(MINLP), which is generally NP-hard and and computationally
difficult. The combinatorial optimization variable A makes this
problem nonconvex.

I Key Observation
• Group sparsity structure can be exploited to bridge the combinatorial

variable A and the aggregated beamforming vector v. Specifically, if
the n-th BS does not perform task φk, the corresponding
beamforming vector vnk can be set as zero (i.e., ‖vnk‖2 = 0), which
leads to the group sparsity structure of v.

I Tackling NP-hard MINLP =⇒ Inducing Structured Sparsity
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Structured Sparsity Inducing Norms

I Related Works
• mixed `1,2-norm [Shi et al.’14].
• re-weighted `1 norm [Peng et al.’17]
• re-weighted `2 norm [Shi et al.’16].

I Proposal: Log-Sum Function for Sparsity Inducing

minimize
v

Ω(v) :=
∑
n∈N

∑
k∈K

ρnk log(1 + p ‖vnk‖2)

subject to SINRk ≥ γk, k = 1, . . . ,K,∑
k∈K
‖vnk‖22 ≤ Pmax

n , n = 1, . . . , N,

where ρnk =
√
P c
nk/ηn.

• Based on the fact that the log-sum function serves as a tighter
approximation to `0-norm ‖x‖0 compared to `1-norm ‖x‖1 [Candes
et al.’08].



I New Challenge
• the nonconvex and nonsmooth nature of Ω(v) with respect to vnk

I Solution
• iteratively approximate Ω(v) by its linearization at current iterate

v[i] until converge

Ω(v) ≈
∑
n∈N

∑
k∈K

w
[i]
nk ‖vnk‖2 ,

and the weight w
[i]
nk is updated as

w
[i]
nk =

pρnk

p
∥∥∥v[i]

nk

∥∥∥
2

+ 1
.



The Overall Algorithm
I Step 1 : induce group sparsity by iteratively solving the linearized

log-sum based optimization problem, which is actually the
re-weighted `1 sparsity inducing norm.

I Step 2 : arrange tasks in a descending order according to the rule

θnk =

√
‖hkn‖22ηn

P c
nk

‖v?nk‖2, and determine the feasible task selection

strategy with least cardinality.
I Step 3 : fix the task selection strategy and refine beamforming

vectors. This is achieved by solving

minimize
v

∑
n∈N

∑
k∈K

1

ηn
‖vnk‖22 +

∑
n

∑
k∈An

P c
nk

subject to SINRk ≥ γk, k = 1, . . . ,K,∑
k∈K
‖vnk‖22 ≤ Pmax

n , n = 1, . . . , N,

vπ(t) = 0.

where π(t) is the active task index determined in Step 2.
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Convergence Analysis

I Challenges of Convergence analysis
• global convergence analysis of nonconvex `2,p minimization problems

with linear constraints [Chen et al.’14]
• global convergence analysis of unconstrained nonsmooth and

nonconvex regularization problems [Ochs et al.’15]

I Goal: derive the global convergence analysis of our nonconvex and
nonsmooth problem with general convex constraints

I add more details here
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Simulation Results
I Simulation results averaged over 100 channel realizations with
N = 6,K = 10, L = 2. Benchmark: coordinated beamforming and
mixed `1,2-norm based group sparse beamforming.
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Remark

• The proposed log-sum based group sparsity inducing norm can
successfully decrease the number of performed tasks while satisfying
pre-defined QoS, thereby yielding less power consumption.
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Concluding Remarks

I Joint task selection and transmit beamforming design
problem in green edge computing

• Log-sum based group sparsity inducing approach

I Convergence analysis of the re-weighted `1 algorithm

• describe more details here



Thanks !
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