Deep Learning Tasks Processing in Fog-RAN

Sheng Hua, **Xiangyu Yang**, Kai Yang, Gao Yin, Yuanming Shi, Hao Wang

> School of Information Science and Technology ShanghaiTech University

Introduction

System Model and Problem Formulation

Proposed Algorithm

Convergence Analysis

Simulation Results

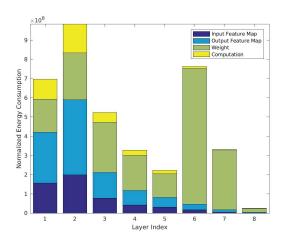
Motivations

- ► The marriage of mobile edge computing (MEC) and artificial intelligence (AI) to evoke potentials
 - the explosive growth in the volume of data at the network edge
 - the unprecedented success of data-driven deep learning (DL) applications
 - the growing need to perform intelligent tasks on mobile devices such as autonomous vehicles and drones

Motivations

- ► The marriage of mobile edge computing (MEC) and artificial intelligence (AI) to evoke potentials
 - the explosive growth in the volume of data at the network edge
 - the unprecedented success of data-driven deep learning (DL) applications
 - the growing need to perform intelligent tasks on mobile devices such as autonomous vehicles and drones
- ► The enormous consumption due to
 - the dense deployment of base stations (BSs)
 - the energy-demanding nature of DL algorithms

Power Consumption Decomposition for AlexNet

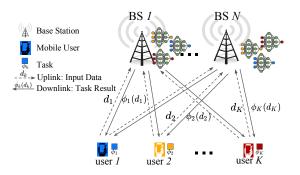


1

► That's around 0.45W, which is comparable to the power consumption of a BS, e.g., 1W.

¹Produced on the website https://energyestimation.mit.edu/.

Framework



- ▶ Basic tradeoff: more BSs working on the same task results in higher quality-of-service (QoS) perceived by users, at the cost of computation and communication inefficiency
- ► Goal
 - minimize power consumption while satisfying pre-defined QoS to achieve green mobile edge computing

Introduction

System Model and Problem Formulation

Proposed Algorithm

Convergence Analysis

Simulation Results

System Model

▶ Communication Model: the set of N L-antenna BSs \mathcal{N} , the set of K single-antenna users \mathcal{K} , task selection strategy $\mathcal{A} = (\mathcal{A}_1, \dots, \mathcal{A}_N)$

$$y_k = \sum_{n \in \mathcal{N}} \boldsymbol{h}_{kn}^{\mathrm{H}} \sum_{l \in \mathcal{A}_n} \boldsymbol{v}_{nl} s_l + z_k$$

- $y_k \in \mathbb{C}$: the received signal at the k-th user
- $m{\cdot}$ $m{h}_{kn} \in \mathbb{C}^L$: the channel vector between the k-th user and n-th BS
- ullet $s_l\in\mathbb{C}$: the representative signal for task result $\phi_l(d_l)$
- $oldsymbol{v}_{nl} \in \mathbb{C}^L$: the beamforming vector at n-th BS for signal s_l
- $z_k \sim \mathcal{CN}\left(0, \sigma_k^2\right)$: the complex additive white Gaussian noise

System Model

▶ Communication Model: the set of N L-antenna BSs \mathcal{N} , the set of K single-antenna users \mathcal{K} , task selection strategy $\mathcal{A} = (\mathcal{A}_1, \dots, \mathcal{A}_N)$

$$y_k = \sum_{n \in \mathcal{N}} \boldsymbol{h}_{kn}^{\mathrm{H}} \sum_{l \in \mathcal{A}_n} \boldsymbol{v}_{nl} s_l + z_k$$

- $y_k \in \mathbb{C}$: the received signal at the k-th user
- $m{h}_{kn} \in \mathbb{C}^L$: the channel vector between the k-th user and n-th BS
- $s_l \in \mathbb{C}$: the representative signal for task result $\phi_l(d_l)$
- $oldsymbol{v}_{nl} \in \mathbb{C}^L$: the beamforming vector at n-th BS for signal s_l
- $z_k \sim \mathcal{CN}\left(0, \sigma_k^2\right)$: the complex additive white Gaussian noise

▶ Power Consumption Model

$$\sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} \frac{1}{\eta_n} \| \boldsymbol{v}_{nk} \|_2^2 + \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{A}_n} P_{nk}^{c}$$
communication power

- η_n : the power amplifier efficiency of the n-th BS
- P_{nk}^c : the computational power consumption for n-th BS to perform the k-th user's task

Problem Formulation

▶ Given users' target QoS $[\gamma_1,\ldots,\gamma_K]$, and BSs' maximum power limits $[P_1^{\max},\ldots,P_N^{\max}]$, the goal of green computing is formulated as the following joint transmit beamforming design and task selection problem

- SINR_k = $\frac{\left|\sum_{n:k\in\mathcal{A}_n} \mathbf{h}_{kn}^{\mathbf{H}} \mathbf{v}_{nk}\right|^2}{\sum_{l\neq k} \left|\sum_{n:l\in\mathcal{A}_n} \mathbf{h}_{kn}^{\mathbf{H}} \mathbf{v}_{nl}\right|^2 + \sigma_k^2}$
- $m{v} = \left[m{v}_{11}^{\mathrm{H}}, m{v}_{12}^{\mathrm{H}}, \dots, m{v}_{NK}^{\mathrm{H}} \right]^{\mathrm{H}} \in \mathbb{C}^{NLK}$ is the aggregated transmit beamforming vector.

Problem Analysis

► The above problem is a mixed-integer-nonlinear-programming (MINLP), which is generally NP-hard and computationally difficult. The combinatorial optimization variable A makes this problem nonconvex.

Problem Analysis

► The above problem is a mixed-integer-nonlinear-programming (MINLP), which is generally NP-hard and computationally difficult. The combinatorial optimization variable A makes this problem nonconvex.

Key Observation

• Group sparsity structure can be exploited to bridge the combinatorial variable $\mathcal A$ and the aggregated beamforming vector $\boldsymbol v$. Specifically, if the n-th BS does not perform task ϕ_k , the corresponding beamforming vector $\boldsymbol v_{nk}$ can be set as zero (i.e., $\|\boldsymbol v_{nk}\|_2=0$), which leads to the group sparsity structure of $\boldsymbol v$.

Problem Analysis

▶ The above problem is a mixed-integer-nonlinear-programming (MINLP), which is generally NP-hard and computationally difficult. The combinatorial optimization variable A makes this problem nonconvex.

Key Observation

- Group sparsity structure can be exploited to bridge the combinatorial variable $\mathcal A$ and the aggregated beamforming vector $\boldsymbol v$. Specifically, if the n-th BS does not perform task ϕ_k , the corresponding beamforming vector $\boldsymbol v_{nk}$ can be set as zero (i.e., $\|\boldsymbol v_{nk}\|_2 = 0$), which leads to the group sparsity structure of $\boldsymbol v$.
- ► Tackling NP-hard MINLP ⇒ Inducing Structured Sparsity

Introduction

System Model and Problem Formulation

Proposed Algorithm

Convergence Analysis

Simulation Results

Structured Sparsity Inducing Norms

Related Works

- mixed $\ell_{1,2}$ -norm [Shi et al.'14].
- re-weighted ℓ_1 norm [Peng et al.'17]
- re-weighted ℓ_2 norm [Shi et al.'16].

▶ Proposal: Log-Sum Function for Sparsity Inducing

$$\begin{aligned} & \underset{\boldsymbol{v}}{\text{minimize}} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

where
$$\rho_{nk} = \sqrt{P_{nk}^{\rm c}/\eta_n}$$
.

• Based on the fact that the log-sum function serves as a tighter approximation to ℓ_0 -norm $\|x\|_0$ compared to ℓ_1 -norm $\|x\|_1$ [Candes et al.'08].

▶ New Challenge

 \bullet the nonconvex and nonsmooth nature of $\Omega({\boldsymbol v})$ with respect to ${\boldsymbol v}_{nk}$

Solution

• iteratively approximate $\Omega({m v})$ by its linearization at current iterate ${m v}^{[i]}$ until converge

$$\Omega(\boldsymbol{v}) \approx \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} w_{nk}^{[i]} \|\boldsymbol{v}_{nk}\|_{2},$$

and the weight $w_{nk}^{[i]}$ is updated as

$$w_{nk}^{[i]} = \frac{p\rho_{nk}}{p \left\| \mathbf{v}_{nk}^{[i]} \right\|_{2} + 1}.$$

The Overall Algorithm

▶ Step 1: induce group sparsity by iteratively solving the linearized log-sum based optimization problem, which is actually the re-weighted ℓ_1 sparsity inducing norm.

The Overall Algorithm

- ▶ Step 1: induce group sparsity by iteratively solving the linearized log-sum based optimization problem, which is actually the re-weighted ℓ_1 sparsity inducing norm.
- ▶ Step 2: arrange tasks in a descending order according to the rule $\theta_{nk} = \sqrt{\frac{\|\boldsymbol{h}_{kn}\|_2^2\eta_n}{P_{nk}^c}} \left\|\boldsymbol{v}_{nk}^{\star}\right\|_2 \text{, and determine the feasible task selection strategy with least cardinality.}$

The Overall Algorithm

- ▶ Step 1: induce group sparsity by iteratively solving the linearized log-sum based optimization problem, which is actually the re-weighted ℓ_1 sparsity inducing norm.
- ▶ Step 2: arrange tasks in a descending order according to the rule $\theta_{nk} = \sqrt{\frac{\|\boldsymbol{h}_{kn}\|_2^2\eta_n}{P_{nk}^c}} \, \|\boldsymbol{v}_{nk}^\star\|_2 \text{, and determine the feasible task selection strategy with least cardinality.}$
- ► Step 3: fix the task selection strategy and refine beamforming vectors. This is achieved by solving

minimize
$$\sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} \frac{1}{\eta_n} \|\boldsymbol{v}_{nk}\|_2^2 + \sum_n \sum_{k \in \mathcal{A}_n} P_{nk}^{\mathsf{c}}$$
subject to
$$\operatorname{SINR}_k \geq \gamma_k, \quad k = 1, \dots, K,$$
$$\sum_{k \in \mathcal{K}} \|\boldsymbol{v}_{nk}\|_2^2 \leq P_n^{\max}, \quad n = 1, \dots, N,$$
$$\boldsymbol{v}_{\pi^{(t)}} = \boldsymbol{0}.$$

where $\pi^{(t)}$ is the active task index determined in *Step 2*.

Introduction

System Model and Problem Formulation

Proposed Algorithm

Convergence Analysis

Simulation Results

Convergence Analysis

- ► Challenges of Convergence analysis
 - global convergence analysis of nonconvex $\ell_{2,p}$ minimization problems with linear constraints [Chen et al.'14]
 - global convergence analysis of unconstrained nonsmooth and nonconvex regularization problems [Ochs et al.'15]
- ► Goal: derive the global convergence analysis of our nonconvex and nonsmooth problem with general convex constraints
- add more details here

Introduction

System Model and Problem Formulation

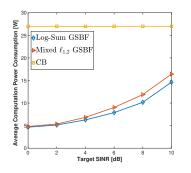
Proposed Algorithm

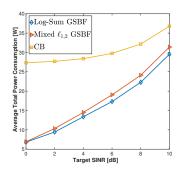
Convergence Analysis

Simulation Results

Simulation Results

▶ Simulation results averaged over 100 channel realizations with N=6, K=10, L=2. Benchmark: coordinated beamforming and mixed $\ell_{1,2}$ -norm based group sparse beamforming.





Remark

 The proposed log-sum based group sparsity inducing norm can successfully decrease the number of performed tasks while satisfying pre-defined QoS, thereby yielding less power consumption.

Introduction

System Model and Problem Formulation

Proposed Algorithm

Convergence Analysis

Simulation Results

Concluding Remarks

- ► Joint task selection and transmit beamforming design problem in green edge computing
 - Log-sum based group sparsity inducing approach
- ightharpoonup Convergence analysis of the re-weighted ℓ_1 algorithm
 - · describe more details here

Thanks!